NKCC2A and NFAT5 regulate renal TNF production induced by hypertonic NaCl intake.
نویسندگان
چکیده
Pathways that contribute to TNF production by the kidney are not well defined. Mice given 1% NaCl in the drinking water for 3 days exhibited a 2.5-fold increase in urinary, but not plasma, TNF levels compared with mice given tap water. Since furosemide attenuated the increase in TNF levels, we hypothesized that hypertonic NaCl intake increases renal TNF production by a pathway involving the Na(+)-K(+)-2Cl(-) cotransporter (NKCC2). A 2.5-fold increase in NKCC2A mRNA accumulation was observed in medullary thick ascending limb (mTAL) tubules from mice given 1% NaCl; a concomitant 2-fold increase in nuclear factor of activated T cells 5 (NFAT5) mRNA and protein expression was observed in the outer medulla. Urinary TNF levels were reduced in mice given 1% NaCl after an intrarenal injection of a lentivirus construct designed to specifically knockdown NKCC2A (EGFP-N2A-ex4); plasma levels of TNF did not change after injection of EGFP-N2A-ex4. Intrarenal injection of EGFP-N2A-ex4 also inhibited the increase of NFAT5 mRNA abundance in the outer medulla of mice given 1% NaCl. TNF production by primary cultures of mTAL cells increased approximately sixfold in response to an increase in osmolality to 400 mosmol/kgH2O produced with NaCl and was inhibited in cells transiently transfected with a dnNFAT5 construct. Transduction of cells with EGFP-N2A-ex4 also prevented increases in TNF mRNA and protein production in response to high NaCl concentration and reduced transcriptional activity of a NFAT5 promoter construct. Since NKCC2A expression is restricted to the TAL, NKCC2A-dependent activation of NFAT5 is part of a pathway by which the TAL produces TNF in response to hypertonic NaCl intake.
منابع مشابه
Differential regulation of NFAT 5 by NKCC 2 isoforms in medullary thick ascending limb 3 ( mTAL ) cells 4 5
26 27 The effects of Na-K-2Cl cotransporter type 2 (NKCC2) isoforms on the regulation of nuclear 28 factor of activated T cells isoform 5 (NFAT5) was determined in mouse medullary thick ascending 29 limb (mTAL) cells exposed to high NaCl concentration. Primary cultures of mTAL cells and freshly 30 isolated mTAL tubules, both derived from outer medulla (outer stripe>inner stripe), express NKCC2 ...
متن کاملMitochondrial reactive oxygen species contribute to high NaCl-induced activation of the transcription factor TonEBP/OREBP.
Hypertonicity activates the transcription factor tonicity-responsive enhancer/osmotic response element binding protein (TonEBP/OREBP), resulting in increased expression of genes involved in osmoprotective accumulation of organic osmolytes, including glycine betaine, and in increased expression of osmoprotective heat shock proteins. Our previous studies showed that high NaCl increases reactive o...
متن کاملInhibitory phosphorylation of GSK-3β by AKT, PKA, and PI3K contributes to high NaCl-induced activation of the transcription factor NFAT5 (TonEBP/OREBP).
High NaCl activates the transcription factor nuclear factor of activated T cells 5 (NFAT5), leading to increased transcription of osmoprotective target genes. Kinases PKA, PI3K, AKT1, and p38α were known to contribute to the high NaCl-induced increase of NFAT5 activity. We now identify another kinase, GSK-3β. siRNA-mediated knock-down of GSK-3β increases NFAT5 transcriptional and transactivatin...
متن کاملPKC-α contributes to high NaCl-induced activation of NFAT5 (TonEBP/OREBP) through MAPK ERK1/2.
High NaCl in the renal medullary interstitial fluid powers the concentration of urine but can damage cells. The transcription factor nuclear factor of activated T cells 5 (NFAT5) activates the expression of osmoprotective genes. We studied whether PKC-α contributes to the activation of NFAT5. PKC-α protein abundance was greater in the renal medulla than in the cortex. Knockout of PKC-α reduced ...
متن کاملHigh NaCl-induced inhibition of PTG contributes to activation of NFAT5 through attenuation of the negative effect of SHP-1.
Activation of the transcription factor NFAT5 by high NaCl involves changes in phosphorylation. By siRNA screening, we previously found that protein targeting to glycogen (PTG), a regulatory subunit of protein phosphatase1 (PP1), contributes to regulation of high NaCl-induced NFAT5 transcriptional activity. The present study addresses the mechanism involved. We find that high NaCl-induced inhibi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 304 5 شماره
صفحات -
تاریخ انتشار 2013